A Holistic Approach to Power Systems Using Innovative Machine Learning and System Dynamics

Author:

Ibrahim Bibi1ORCID,Rabelo Luis1ORCID,Sarmiento Alfonso T.2,Gutierrez-Franco Edgar3ORCID

Affiliation:

1. Industrial Engineering & Management Systems Department, University of Central Florida, Orlando, FL 32816, USA

2. Research Group on Logistics Systems, College of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 250001, Colombia

3. Center for Transportation and Logistics CTL, Massachusetts Institute of Technology, Cambridge, MA 02142, USA

Abstract

The digital revolution requires greater reliability from electric power systems. However, predicting the growth of electricity demand is challenging as there is still much uncertainty in terms of demographics, industry changes, and irregular consumption patterns. Machine learning has emerged as a powerful tool, particularly with the latest developments in deep learning. Such tools can predict electricity demand and, thus, contribute to better decision-making by energy managers. However, it is important to recognize that there are no efficient methods for forecasting peak demand growth. In addition, features that add complexity, such as climate change and economic growth, take time to model. Therefore, these new tools can be integrated with other proven tools that can be used to model specific system structures, such as system dynamics. This research proposes a unique framework to support decision-makers in dealing with daily activities while attentively tracking monthly peak demand. This approach integrates advances in machine learning and system dynamics. This integration has the potential to contribute to more precise forecasts, which can help to develop strategies that can deal with supply and demand variations. A real-world case study was used to comprehend the needs of the environment and the effects of COVID-19 on power systems; it also helps to demonstrate the use of leading-edge tools, such as convolutional neural networks (CNNs), to predict electricity demand. Three well-known CNN variants were studied: a multichannel CNN, CNN-LSTM, and a multi-head CNN. This study found that the multichannel CNN outperformed all the models, with an R2 of 0.92 and a MAPE value of 1.62% for predicting the month-ahead peak demand. The multichannel CNN consists of one main model that processes four input features as a separate channel, resulting in one feature map. Furthermore, a system dynamics model was introduced to model the energy sector’s dynamic behavior (i.e., residential, commercial, and government demands, etc.). The calibrated model reproduced the historical data curve fairly well between 2005 and 2017, with an R2 value of 0.94 and a MAPE value of 4.8%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3