A Novel Two-Axis Differential Resonant Accelerometer Based on Graphene with Transmission Beams

Author:

Xiao Yang,Hu Feng,Zhang Yuchen,Zheng Jiaxing,Qin Shiqiao

Abstract

In this paper, a novel two-axis differential resonant accelerometer based on graphene with transmission beams is presented. This accelerometer can not only reduce the cross sensitivity, but also overcome the influence of gravity, realizing fast and accurate measurement of the direction and magnitude of acceleration on the horizontal plane. The simulation results show that the critical buckling acceleration is 460 g, the linear range is 0–89 g, while the differential sensitivity is 50,919 Hz/g, which is generally higher than that of the resonant accelerometer reported previously. Thus, the accelerometer belongs to the ultra-high sensitivity accelerometer. In addition, increasing the length and tension of graphene can obviously increase the critical linear acceleration and critical buckling acceleration with the decreasing sensitivity of the accelerometer. Additionally, the size change of the force transfer structure can significantly affect the detection performance. As the etching accuracy reaches the order of 100 nm, the critical buckling acceleration can reach up to 5 × 104 g, with a sensitivity of 250 Hz/g. To sum up, a feasible design of a biaxial graphene resonant accelerometer is proposed in this work, which provides a theoretical reference for the fabrication of a graphene accelerometer with high precision and stability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3