An Improved Instance Segmentation Method for Fast Assessment of Damaged Buildings Based on Post-Earthquake UAV Images

Author:

Zou Ran1ORCID,Liu Jun12,Pan Haiyan1ORCID,Tang Delong3,Zhou Ruyan1

Affiliation:

1. School of Information Science, Shanghai Ocean University, Shanghai 201306, China

2. National Earthquake Response Support Service, Beijing 100049, China

3. Guizhou Provincial Seismological Bureau, Guiyang 550001, China

Abstract

Quickly and accurately assessing the damage level of buildings is a challenging task for post-disaster emergency response. Most of the existing research mainly adopts semantic segmentation and object detection methods, which have yielded good results. However, for high-resolution Unmanned Aerial Vehicle (UAV) imagery, these methods may result in the problem of various damage categories within a building and fail to accurately extract building edges, thus hindering post-disaster rescue and fine-grained assessment. To address this issue, we proposed an improved instance segmentation model that enhances classification accuracy by incorporating a Mixed Local Channel Attention (MLCA) mechanism in the backbone and improving small object segmentation accuracy by refining the Neck part. The method was tested on the Yangbi earthquake UVA images. The experimental results indicated that the modified model outperformed the original model by 1.07% and 1.11% in the two mean Average Precision (mAP) evaluation metrics, mAPbbox50 and mAPseg50, respectively. Importantly, the classification accuracy of the intact category was improved by 2.73% and 2.73%, respectively, while the collapse category saw an improvement of 2.58% and 2.14%. In addition, the proposed method was also compared with state-of-the-art instance segmentation models, e.g., Mask-R-CNN and YOLO V9-Seg. The results demonstrated that the proposed model exhibits advantages in both accuracy and efficiency. Specifically, the efficiency of the proposed model is three times faster than other models with similar accuracy. The proposed method can provide a valuable solution for fine-grained building damage evaluation.

Funder

National Key Research and Development Programs

National Natural Science Foundation of China

Natural Science Foundation of Guizhou Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3