Numerical Study of the Movement of Single Fine Particles in Porous Media Based on LBM-DEM

Author:

Zhou Yinggui1,Fo Bin2,Xu Ruifu2,Xi Jianfei2,Cai Jie2

Affiliation:

1. School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China

2. School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China

Abstract

The fine particle liquid–solid flow in porous media is involved in many industrial processes such as oil exploitation, geothermal reinjection and particle filtration. Understanding the migration characteristics of single fine particles in liquid–solid flow in porous media can provide micro-detailed explanations for the fine particle liquid–solid flow in porous media. In this paper, an existing lattice Boltzmann method–discrete element method (LBM-DEM) is improved by introducing a new boundary thickening direct forcing (BTDF) immersed boundary method (IBM) to replace the classical IBM. The new method is used to investigate the migrations of one, two or three fine particles in a flow field in porous media and the reactions of one, two or three fine particles on the flow field. It is found that the movement distance of a fine particle in porous media does not show a linear correlation with the fine particle’s density. A fine particle with a higher density may move a shorter distance and then stagnates. Although a fine particle with a smaller diameter has a better following performance in a flow field, it is also likely to be stranded in a low-infiltration area in porous media. Under the same increase ratio, the increase in the diameter of a fine particle causes an increased pressure drop of the liquid–solid flow. In some cases, the increase in the quantity of fine particles can intensify the disturbance of fine particles on the flow field, improving the movement of fine particles.

Funder

National Natural Science Foundation of China

Yancheng Institute of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3