Algal Nanoparticles and Their Antibacterial Activity: Current Research Status and Future Prospectives

Author:

Behera Maheswari1,Behera Prateek Ranjan2ORCID,Bhuyan Prajna Paramita3,Singh Lakshmi1,Pradhan Biswajita4ORCID

Affiliation:

1. Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar 751003, India

2. Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar 751003, India

3. Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, India

4. School of Biological Sciences, AIPH University, Bhubaneswar 75210, India

Abstract

Green nanotechnology is a promising technology that has a wide range of applications in pharmaceuticals today because they offer a higher surface-area-to-volume ratio. Algal-based nanoparticles (NPs) are the subject of intense research interest today for their potential to treat and prevent infections caused by infectious microorganisms that are antibiotic resistant. Algae contain a variety of therapeutically potential bioactive ingredients, including chlorophyll, phycobilin, phenolics, flavonoids, glucosides, tannins, and saponins. As a result, NPs made from algae could be used as therapeutic antimicrobials. Due to their higher surface-area-to-volume ratios compared to their macroscopic components, metallic nanoparticles are more reactive and have toxic effects on their therapy. For pharmaceutical and biomedical applications, green synthesis restricts the use of physical and chemical methods of metallic nanoparticle synthesis, and it can be carried out in an environmentally friendly and relatively low-cost manner. The majority of macroalgae and some microalgae have latent antimicrobial activity and are used in the synthesis of metallic nanoparticles. A potential application in the field of nanomedicine and the establishment of a potential pharmacophore against microorganisms may result from the synthesis of algal-based NPs. Only a few studies have been done on the potential antimicrobial, antifungal, and antibacterial activity of algae-based NPs. As a result, the study will concentrate on the environmentally friendly synthesis of various NPs and their therapeutic potential, with a focus on their antibacterial activity. Thus, the aim of this study is to review all the literature available on the synthesis and characterization of the algal nanoparticles and their potential application as an antibacterial agent.

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3