Flood Evacuation Routes Based on Spatiotemporal Inundation Risk Assessment

Author:

Lee Yoon Ha,Kim Hyun IlORCID,Han Kun Yeun,Hong Won Hwa

Abstract

For flood risk assessment, it is necessary to quantify the uncertainty of spatiotemporal changes in floods by analyzing space and time simultaneously. This study designed and tested a methodology for the designation of evacuation routes that takes into account spatial and temporal inundation and tested the methodology by applying it to a flood-prone area of Seoul, Korea. For flood prediction, the non-linear auto-regressive with exogenous inputs neural network was utilized, and the geographic information system was utilized to classify evacuations by walking hazard level as well as to designate evacuation routes. The results of this study show that the artificial neural network can be used to shorten the flood prediction process. The results demonstrate that adaptability and safety have to be ensured in a flood by planning the evacuation route in a flexible manner based on the occurrence of, and change in, evacuation possibilities according to walking hazard regions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. A Spatial Analysis Approach to Evacuation Management: Shelter Assignment and Routing; Research@Locate’15, Brisbane, Australiahttp://ceur-ws.org

2. Flood Resilient and Sustainable Urban Regeneration Using the Example of an Industrial Compound Conversion in Seoul, South Korea

3. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century;Jha,2012

4. Disaster Management: Selections of Evacuation Routes Due to Flood Disaster

5. A study on the characteristics and composition direction of urban flood control system;Lee;Water Future,2006

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3