Design of Locally Resonant Acoustic Metamaterials with Specified Band Gaps Using Multi-Material Topology Optimization

Author:

Chen Hongfang1,Fu Yu1ORCID,Ling Ling1,Hu Yujin1,Li Li1ORCID

Affiliation:

1. State Key Lab of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Locally Resonant Acoustic Metamaterials (LRAMs) have significant application potential because they can form subwavelength band gaps. However, most current research does not involve obtaining LRAMs with specified band gaps, even though such LRAMs are significant for practical applications. To address this, we propose a parameterized level-set-based topology optimization method that can use multiple materials to design LRAMs that meet specified frequency constraints. In this method, a simplified band-gap calculation approach based on the homogenization framework is introduced, establishing a restricted subsystem and an unrestricted subsystem to determine band gaps without relying on the Brillouin zone. These subsystems are specifically tailored to model the phenomena involved in band gaps in LRAMs, facilitating the opening of band gaps during optimization. In the multi-material representation model used in this method, each material, except for the matrix material, is depicted using a similar combinatorial formulation of level-set functions. This model reduces direct conversion between materials other than the matrix material, thereby enhancing the band-gap optimization of LRAMs. Two problems are investigated to test the method’s ability to use multiple materials to solve band-gap optimization problems with specified frequency constraints. The first involves maximizing the band-gap width while ensuring it encompasses a specified frequency range, and the second focuses on obtaining light LRAMs with a specified band gap. LRAMs with specified band gaps obtained in three-material or four-material numerical examples demonstrate the effectiveness of the proposed method. The method shows great promise for designing metamaterials to attenuate specified frequency spectra as required, such as mechanical vibrations or environmental noise.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3