Experimental Investigations on the Application of Natural Plant Fibers in Ultra-High-Performance Concrete

Author:

Joachim Linus1ORCID,Oettel Vincent1ORCID

Affiliation:

1. Institute of Concrete Construction, Leibniz University Hannover, 30167 Hannover, Germany

Abstract

Due to its high strength, the use of ultra-high-performance concrete (UHPC) is particularly suitable for components subjected to compressive loads. Combined with its excellent durability, UHPC can be used to produce highly resource-efficient components that represent a sustainable alternative to conventional load-bearing structures. Since UHPC fails in a brittle manner without the addition of fibers, it is typically used in conjunction with micro steel fibers. The production of these steel fibers is both expensive and energy-intensive. Natural plant fibers, due to their good mechanical properties, cost-effective availability, and inherent CO2 neutrality, can provide a sustainable alternative to conventional steel fibers. Thanks to the low alkaline environment and dense matrix of UHPC, the use of natural plant fibers in terms of durability and bond is possible in principle. For the application of natural plant fibers in UHPC, however, knowledge of the load-bearing and post-cracking behavior or the performance of UHPC reinforced with natural plant fibers is essential. Currently, there are no tests available on the influence of different types of natural plant fibers on the load-bearing behavior of UHPC. Therefore, five series of compression and bending tensile tests were conducted. Three series were reinforced with natural plant fibers (bamboo, coir, and flax), one series without fibers, and one series with steel fibers as a reference. Under compression loads, the test specimens reinforced with natural plant fibers did not fail abruptly and exhibited a comparable post-failure behavior and damage pattern to the reference specimens reinforced with steel fibers. In contrast, the natural plant fibers did not perform as well as the steel fibers under bending tensile stress but did show a certain post-cracking bending tensile strength. A final life cycle assessment demonstrates the superiority of natural plant fibers and shows their positive impact on the environment.

Publisher

MDPI AG

Reference131 articles.

1. Characteristics of ultra-high performance ‘ductile’ concrete and its impact on sustainable construction;Voo;IES J. Part A Civ. Struct. Eng.,2010

2. Application of Ultra High Performance Fiber Reinforced Concrete—The Malaysia Perspective;Nematollahi;Int. J. Sust. Constr. Eng. Techn.,2012

3. UHPFRC-Fertigteilsegmente für einen nachhaltigen und ressourcenschonenden Betonbrückenbau;Wilkening;Beton-Und Stahlbetonbau,2023

4. Investigations on the fatigue loading of thin-walled and resource-efficient UHPFRC segmental bridges;Wilkening;Eng. Struct.,2024

5. Bau einer Bahnbrücke aus bewehrtem UHFB;Friedl;Beton-Und Stahlbetonbau,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3