Long-Term Ultrasonic Benchmarking for Microstructure Characterization with Bayesian Updating

Author:

Zhang Feng,Song Yongfeng,Li Xiongbing,Ni Peijun

Abstract

Ultrasonic non-destructive characterization is an appealing technique for identifying the microstructures of materials in place of destructive testing. However, the existing ultrasonic characterization techniques do not have sufficient long-term gage repeatability and reproducibility (GR&R), since benchmarking data are not updated. In this study, a hierarchical Bayesian regression model was utilized to provide a long-term ultrasonic benchmarking method for microstructure characterization, suitable for analyzing the impacts of experimental setups, human factors, and environmental factors on microstructure characterization. The priori distributions of regression parameters and hyperparameters of the hierarchical model were assumed and the Hamilton Monte Carlo (HMC) algorithm was used to calculate the posterior distributions. Characterizing the nodularity of cast iron was used as an example, and the benchmarking experiments were conducted over a 13-week transition period. The results show that updating a hierarchical model can increase its performance and robustness. The outcome of this study is expected to pave the way for the industrial uptake of ultrasonic microstructure characterization techniques by organizing a gradual transition from destructive sampling inspection to non-destructive one-hundred-percent inspection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3