Abstract
It has been shown that the alternative oxidase in mitochondria of fungi and plants has important functions in the response against stress conditions, although their role in some organisms is still unknown. This is the case of Ustilago maydis. There is no evidence of the participation of the U. maydis Aox1 in stressful conditions such as desiccation, high or low temperature, and low pH, among others. Therefore, in this work, we studied the role of the U. maydis Aox1 in cells exposed to oxidative stress induced by methyl viologen (paraquat). To gain insights into the role of this enzyme, we took advantage of four strains: the FB2 wild-type, a strain without the alternative oxidase (FB2aox1Δ), other with the Aox1 fused to the Gfp under the control of the original promoter (FB2aox1-Gfp), and one expressing constitutively de Aox1-Gfp (FB2Potef:aox1-Gfp). Cells were incubated for various times in the presence of 1 mM paraquat and growth, replicative capacities, mitochondrial respiratory activity, Aox1 capacity, and the activities of several antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase) were assayed. The results show that (1) the response of U. maydis against oxidative stress was the same in the presence or absence of the Aox1; (2) the activities of the antioxidant enzymes remained constant despite the oxidative stress; and (3) there was a decrease in the GSH/GSSG ratio in U. maydis cells incubated with paraquat.
Funder
Consejo Nacional de Ciencia y Tecnología
Universidad Nacional Autónoma de México-Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica
Instituto Politécnico Nacional. Secretaría de Investigación y Posgrado
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献