Informing the Public and Educating Students on Plastic Recycling

Author:

Bennett Ethan M.,Alexandridis PaschalisORCID

Abstract

Approximately 300 million tons of plastic waste is generated per year. The major portion of this plastic waste is landfilled, while part of it leaks into the environment. When plastic waste enters the terrestrial or aqueous environment, it can have negative impacts on ecosystems, human health, and wildlife. Increasing the amount of plastic waste that is recycled will correspondingly reduce the amount of plastic waste that enters the environment. By educating the public and industry on plastic recycling, current recycling programs can be used more efficiently, and new programs can be created. Education material on plastic recycling is available through professional and industry associations, foundations with an environmental focus, university courses, and short courses offered with private companies. This review assembles and analyzes the current education material on plastic recycling that is available from these providers. The material compiled here can be used to gain insight into specific plastic recycling-related topics, to identify areas of recycling education that can be improved, and as a resource to help build university level courses. There is currently a dearth of plastic recycling courses offered at the university level. Educating more students on plastic recycling will equip them with the knowledge and skills to make informed decisions as consumers, and to implement plastic recycling systems at the professional level.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,General Materials Science

Reference103 articles.

1. UN Environment Report “Banning Single-Use Plastic: Lessons and Experiences from Countries” UN Environment Programhttps://www.unep.org/interactive/beat-plastic-pollution/

2. Characteristics of Plastic Pollution in the Environment: A Review

3. Microplastics as an emerging threat to terrestrial ecosystems

4. Plastic waste inputs from land into the ocean

5. Production, use, and fate of all plastics ever made

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3