Comparative Analysis of Splash Erosion Devices for Rainfall Simulation Experiments: A Laboratory Study

Author:

Fernández-Raga María,Campo JuliánORCID,Rodrigo-Comino JesúsORCID,Keesstra Saskia D.

Abstract

For the study of soil erosion it is important to set up the experiments well. In the experimental design one of the key factors is the choice of the measurement device. This is especially important when one part of the erosion process needs to be isolated, such as for splash erosion. Therefore, the main aim of this research is to list the general characteristics of the commonly used splash erosion devices and to discuss the performance, to be able to relate them, and make suggestions regarding their use. The devices we selected for this comparative comparison were: the splash cup, funnel, Morgan tray, Tübingen cup, tower, and the gutter. The devices were tested under the same conditions (rainfall characteristics, slope, and soil type) to assess their hydrological response under different intensities of simulated rainfall. All devices were installed on a sloping plot (10°) with sandy soil, and were exposed to 10 min. of simulated rain with intensities ranging from 60 to 172 mm/h to measure the splashed sediment, and to describe problems and differences among them. The results showed that the Tübingen cup was the best performing device to measure kinetic energy of the rain, but, because of its design, it is not possible to measure the detached splashed sediment under natural (field) conditions. On the other hand, the funnel device showed a significant relation with rain intensity because it loses little sediment to washing. In addition, the device is easy to use and cheap. Therefore, this device is highly recommended to estimated splash erosion. to the good performance measuring the actual splash erosion, because it loses little sediment by washing. The device is also cheap and easy to install and manage.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3