A Dataset for Emotion Recognition Using Virtual Reality and EEG (DER-VREEG): Emotional State Classification Using Low-Cost Wearable VR-EEG Headsets

Author:

Suhaimi Nazmi Sofian,Mountstephens JamesORCID,Teo JasonORCID

Abstract

Emotions are viewed as an important aspect of human interactions and conversations, and allow effective and logical decision making. Emotion recognition uses low-cost wearable electroencephalography (EEG) headsets to collect brainwave signals and interpret these signals to provide information on the mental state of a person, with the implementation of a virtual reality environment in different applications; the gap between human and computer interaction, as well as the understanding process, would shorten, providing an immediate response to an individual’s mental health. This study aims to use a virtual reality (VR) headset to induce four classes of emotions (happy, scared, calm, and bored), to collect brainwave samples using a low-cost wearable EEG headset, and to run popular classifiers to compare the most feasible ones that can be used for this particular setup. Firstly, we attempt to build an immersive VR database that is accessible to the public and that can potentially assist with emotion recognition studies using virtual reality stimuli. Secondly, we use a low-cost wearable EEG headset that is both compact and small, and can be attached to the scalp without any hindrance, allowing freedom of movement for participants to view their surroundings inside the immersive VR stimulus. Finally, we evaluate the emotion recognition system by using popular machine learning algorithms and compare them for both intra-subject and inter-subject classification. The results obtained here show that the prediction model for the four-class emotion classification performed well, including the more challenging inter-subject classification, with the support vector machine (SVM Class Weight kernel) obtaining 85.01% classification accuracy. This shows that using less electrode channels but with proper parameter tuning and selection features affects the performance of the classifications.

Funder

Ministry of Science, Technology and Innovation

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3