Author:
Guo Hai-Xia,Yang Jian-Feng
Abstract
Graphite–metal composites have been used as friction materials owing to their self-lubricity, which is ascribed to the weak interlayer bonding of graphite. To overcome the shortage of graphite flake (GrF)-filled composites of having low tribological properties, graphite-Cu composites with mesocarbon microbead (MCMB) as the solid lubricant are developed in this paper. The MCMB–Cu composites have a lower friction coefficient and wear rate than do the GrF–Cu composites taken as reference materials, exhibiting a better self-lubricating performance. Microstructural analysis indicates that the relatively weaker interlayer bonding of the MCMB, smooth interface between the MCMB and matrix, and more cementite formation thorough reaction of MCMB and iron are the key factors behind the enhanced tribological properties. In addition, both the friction coefficients and wear rates of the two groups of composites gradually decrease with the graphite content. This work opens an avenue for designing desirable graphite-based metal friction materials.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献