Affiliation:
1. School of Urban Design, Wuhan University, Wuhan 430072, China
Abstract
As the backbone of passenger transportation in many large cities around the world, it is particularly important to explore the association between the built environment and metro ridership to promote the construction of smart cities. Although a large number of studies have explored the association between the built environment and metro ridership, they have rarely considered the spatial and temporal heterogeneity between metro ridership and the built environment. Based on metro smartcard data, this study used EM clustering to classify metro stations into five clusters based on the spatiotemporal travel characteristics of the ridership at metro stations. And the GBDT model in machine learning was used to explore the nonlinear association between the built environment and the ridership of different types of stations during four periods in a day (morning peak, noon, evening peak, and night). The results confirm the obvious spatial heterogeneity of the built environment’s impact on the ridership of different types of stations, as well as the obvious temporal heterogeneity of the impact on stations of the same type. In addition, almost all built environment factors have complex nonlinear effects on metro ridership and exhibit obvious threshold effects. It is worth noting that these findings will help the correct decisions be made in constructing land use measures that are compatible with metro functions in smart cities.
Funder
China Scholarship Council
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Urban Studies
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献