Towards a Novel Air–Ground Intelligent Platform for Vehicular Networks: Technologies, Scenarios, and Challenges

Author:

Shinde Swapnil SadashivORCID,Tarchi DanieleORCID

Abstract

Modern cities require a tighter integration with Information and Communication Technologies (ICT) for bringing new services to the citizens. The Smart City is the revolutionary paradigm aiming at integrating the ICT with the citizen life; among several urban services, transports are one of the most important in modern cities, introducing several challenges to the Smart City paradigm. In order to satisfy the stringent requirements of new vehicular applications and services, Edge Computing (EC) is one of the most promising technologies when integrated into the Vehicular Networks (VNs). EC-enabled VNs can facilitate new latency-critical and data-intensive applications and services. However, ground-based EC platforms (i.e., Road Side Units—RSUs, 5G Base Stations—5G BS) can only serve a reduced number of Vehicular Users (VUs), due to short coverage ranges and resource shortage. In the recent past, several new aerial platforms with integrated EC facilities have been deployed for achieving global connectivity. Such air-based EC platforms can complement the ground-based EC facilities for creating a futuristic VN able to deploy several new applications and services. The goal of this work is to explore the possibility of creating a novel joint air-ground EC platform within a VN architecture for helping VUs with new intelligent applications and services. By exploiting most modern technologies, with particular attention towards network softwarization, vehicular edge computing, and machine learning, we propose here three possible layered air-ground EC-enabled VN scenarios. For each of the discussed scenarios, a list of the possible challenges is considered, as well possible solutions allowing to overcome all or some of the considered challenges. A proper comparison is also done, through the use of tables, where all the proposed scenarios, and the proposed solutions, are discussed.

Publisher

MDPI AG

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3