Predicting Autonomous Driving Behavior through Human Factor Considerations in Safety-Critical Events

Author:

Raiyn Jamal1,Weidl Galia1

Affiliation:

1. Connected Urban Mobility, Technical University of Applied Sciences Aschaffenburg, 63743 Aschaffenburg, Germany

Abstract

This paper investigates the ability of autonomous driving systems to predict outcomes by considering human factors like gender, age, and driving experience, particularly in the context of safety-critical events. The primary objective is to equip autonomous vehicles with the capacity to make plausible deductions, handle conflicting data, and adjust their responses in real-time during safety-critical situations. A foundational dataset, which encompasses various driving scenarios such as lane changes, merging, and navigating complex intersections, is employed to enable vehicles to exhibit appropriate behavior and make sound decisions in critical safety events. The deep learning model incorporates personalized cognitive agents for each driver, considering their distinct preferences, characteristics, and requirements. This personalized approach aims to enhance the safety and efficiency of autonomous driving, contributing to the ongoing development of intelligent transportation systems. The efforts made contribute to advancements in safety, efficiency, and overall performance within autonomous driving systems. To describe the causal relationship between external factors like weather conditions and human factors, and safety-critical driver behaviors, various data mining techniques can be applied. One commonly used method is regression analysis. Additionally, correlation analysis is employed to reveal relationships between different factors, helping to identify the strength and direction of their impact on safety-critical driver behavior.

Funder

i4Driving

European Partnership on ‘Connected, Cooperative and Automated Mobility’

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3