Real-Time Recognition and Localization of Apples for Robotic Picking Based on Structural Light and Deep Learning

Author:

Zhang Quan12,Su Wen-Hao1ORCID

Affiliation:

1. College of Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China

2. School of Mechanical Engineering, Tongji University, 4800 Caoan Road, Jiading, Shanghai 201800, China

Abstract

The apple is a delicious fruit with high nutritional value that is widely grown around the world. Apples are traditionally picked by hand, which is very inefficient. The development of advanced fruit-picking robots has great potential to replace manual labor. A major prerequisite for a robot to successfully pick fruits the accurate identification and positioning of the target fruit. The active laser vision systems based on structured algorithms can achieve higher recognition rates by quickly capturing the three-dimensional information of objects. This study proposes to combine the laser active vision system with the YOLOv5 neural network model to recognize and locate apples on trees. The method obtained accurate two-dimensional pixel coordinates, which, when combined with the active laser vision system, can be converted into three-dimensional world coordinates for apple recognition and positioning. On this basis, we built a picking robot platform equipped with this visual recognition system, and carried out a robot picking experiment. The experimental findings showcase the efficacy of the neural network recognition algorithm proposed in this study, which achieves a precision rate of 94%, an average precision mAP% of 92.86%, and a spatial localization accuracy of approximately 4 mm for the visual system. The implementation of this control method in simulated harvesting operations shows the promise of more precise and successful fruit positioning. In summary, the integration of the YOLOv5 neural network model with an active laser vision system presents a novel and effective approach for the accurate identification and positioning of apples. The achieved precision and spatial accuracy indicate the potential for enhanced fruit-harvesting operations, marking a significant step towards the automation of fruit-picking processes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Urban Studies

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Application of Deep Learning in the Whole Potato Production Chain: A Comprehensive Review;Agriculture;2024-07-25

2. Recurrent Neural Network-Based Classification of Potato Leaves using RGB Images;2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3