Fast Object Detection Using Dimensional Based Features for Public Street Environments

Author:

Matveev Ivan,Karpov Kirill,Chmielewski Ingo,Siemens Eduard,Yurchenko Aleksey

Abstract

Modern object recognition algorithms have very high precision. At the same time, they require high computational power. Thus, widely used low-power IoT devices, which gather a substantial amount of data, cannot directly apply the corresponding machine learning algorithms to process it due to the lack of local computational resources. A method for fast detection and classification of moving objects for low-power single-board computers is shown in this paper. The developed algorithm uses geometric parameters of an object as well as scene-related parameters as features for classification. The extraction and classification of these features is a relatively simple process which can be executed by low-power IoT devices. The algorithm aims to recognize the most common objects in the street environment, e.g., pedestrians, cyclists, and cars. The algorithm can be applied in the dark environment by processing images from a near-infrared camera. The method has been tested on both synthetic virtual scenes and real-world data. The research showed that a low-performance computing system, such as a Raspberry Pi 3, is able to classify objects with acceptable frame rate and accuracy.

Funder

Volkswagen Foundation

Publisher

MDPI AG

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic literature review on object detection using near infrared and thermal images;Neurocomputing;2023-12

2. Smart and Sentient Retail High Streets;Smart Cities;2022-11-29

3. Comparative Analysis of Object Detection Methods in Computer Vision for Low-Performance Computers Towards Smart Lighting Systems;Progress in Advanced Information and Communication Technology and Systems;2022-11-18

4. Indoor Object Classification System using Neural Networks for Smart Environments;Artificial Intelligence for Smart Cities and Villages: Advanced Technologies, Development, and Challenges;2022-08-14

5. Human and object detection using Hybrid Deep Convolutional Neural Network;Signal, Image and Video Processing;2022-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3