Silk Sericin Enrichment through Electrodeposition and Carbonous Materials for the Removal of Methylene Blue from Aqueous Solution

Author:

Ji Yansong,Zhang XiaoningORCID,Chen ZhenyuORCID,Xiao Yuting,Li Shiwei,Gu Jie,Hu Hongmei,Cheng GuotaoORCID

Abstract

The recycling and reuse of biomass waste for the preparation of carbon-based adsorbents is a sustainable development strategy that has a positive environmental impact. It is well known that a large amount of silk sericin (SS) is dissolved in the wastewater from the silk industry. Utilizing the SS instead of discharging it into the environment without further treatment would reduce environmental and ecological problems. However, effective enrichment of the SS from the aqueous solution is a challenge. Here, with the help of carboxymethyl chitosan (CMCS), which can form a gel structure under low voltage, an SS/CMCS hydrogel with SS as the major component was prepared via electrodeposition at a 3 V direct-current (DC) voltage for five minutes. Following a carbonization process, an SS-based adsorbent with good performance for the removal of methylene blue (MB) from an aqueous solution was prepared. Our results reveal that the SS/CMCS hydrogel maintains a porous architecture before and after carbonization. Such structure provides abundant adsorption sites facilitating the adsorption of MB molecules, with a maximum adsorptive capacity of 231.79 mg/g. In addition, it suggests that the adsorption is an exothermic process, has a good fit with the Langmuir model, and follows the intra-particle diffusion model. The presented work provides an economical and feasible path for the treatment of wastewater from dyeing and printing.

Funder

Chongqing Municipal Commission of Commerce

Science and Technology Project of Zhejiang Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3