The Use of Neural Networks and Genetic Algorithms to Control Low Rigidity Shafts Machining

Author:

Świć AntoniORCID,Wołos Dariusz,Gola ArkadiuszORCID,Kłosowski GrzegorzORCID

Abstract

The article presents an original machine-learning-based automated approach for controlling the process of machining of low-rigidity shafts using artificial intelligence methods. Three models of hybrid controllers based on different types of neural networks and genetic algorithms were developed. In this study, an objective function optimized by a genetic algorithm was replaced with a neural network trained on real-life data. The task of the genetic algorithm is to select the optimal values of the input parameters of a neural network to ensure minimum deviation. Both input vector values and the neural network’s output values are real numbers, which means the problem under consideration is regressive. The performance of three types of neural networks was analyzed: a classic multilayer perceptron network, a nonlinear autoregressive network with exogenous input (NARX) prediction network, and a deep recurrent long short-term memory (LSTM) network. Algorithmic machine learning methods were used to achieve a high level of automation of the control process. By training the network on data from real measurements, we were able to control the reliability of the turning process, taking into account many factors that are usually overlooked during mathematical modelling. Positive results of the experiments confirm the effectiveness of the proposed method for controlling low-rigidity shaft turning.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3