Abstract
Enzymatic membrane bioreactors (EMBRs) possess the characteristic of combining catalysis with separation, and therefore have promising application potentials. In order to achieve a high-performance EMBR, membrane property, as well as operating parameters, should give special cause for concerns. In this work, an EMBR based on hollow fiber polysulfone microfiltration membranes with radial gradient pore structure was fabricated and enzyme immobilization was achieved through pressure-driven filtration. Lipase from Candida rugosa was used for immobilization and EMBR performance was studied with the enzymatic hydrolysis of glycerol triacetate as a model reaction. The influences of membrane pore diameter, substrate feed direction as well as operational parameters of operation pressure, substrate concentration, and temperature on the EMBR activity were investigated with the production of hydrolysates kinetically fitted. The complete EMBR system showed the highest activity of 1.07 × 104 U⋅g−1. The results in this work indicate future efforts for improvement in EMBR.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献