Fabrication and Optimization of a Lipase Immobilized Enzymatic Membrane Bioreactor based on Polysulfone Gradient-Pore Hollow Fiber Membrane

Author:

Chen Peng-Cheng,Ma Zhen,Zhu Xue-Yan,Chen Da-Jing,Huang Xiao-JunORCID

Abstract

Enzymatic membrane bioreactors (EMBRs) possess the characteristic of combining catalysis with separation, and therefore have promising application potentials. In order to achieve a high-performance EMBR, membrane property, as well as operating parameters, should give special cause for concerns. In this work, an EMBR based on hollow fiber polysulfone microfiltration membranes with radial gradient pore structure was fabricated and enzyme immobilization was achieved through pressure-driven filtration. Lipase from Candida rugosa was used for immobilization and EMBR performance was studied with the enzymatic hydrolysis of glycerol triacetate as a model reaction. The influences of membrane pore diameter, substrate feed direction as well as operational parameters of operation pressure, substrate concentration, and temperature on the EMBR activity were investigated with the production of hydrolysates kinetically fitted. The complete EMBR system showed the highest activity of 1.07 × 104 U⋅g−1. The results in this work indicate future efforts for improvement in EMBR.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-situ immobilization of lipase on α-alumina membrane for oil fouling control and cleaning;Separation and Purification Technology;2024-02

2. An Overview of Crosslinked Enzyme Aggregates: Concept of Development and Trends of Applications;Applied Biochemistry and Biotechnology;2024-01-05

3. Current trends in enzymatic membrane reactor;Current Trends and Future Developments on (Bio)Membranes;2023

4. High Sugar Production from Hydrolysate of Pineapple Residues via Integrated Enzyme‐Membrane System;Chemical Engineering & Technology;2022-08-25

5. Biocatalytic membranes through aqueous phase separation;Journal of Colloid and Interface Science;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3