Abstract
This study explores the under-investigated issue of groundwater-borne geogenic phosphorus (P) as the potential driving factor behind accumulation of P in lake sediment. The annual internally released P load from the sediment of the shallow, hypereutrophic and groundwater-fed lake, Nørresø, Denmark, was quantified based on total P (TP) depth profiles. By comparing this load with previously determined external P loadings entering the lake throughout the year 2016–2017, it was evident that internal P release was the immediate controller of the trophic state of the lake. Nevertheless, by extrapolating back through the Holocene, assuming a groundwater P load corresponding to the one found at present time, the total groundwater P input to the lake was found to be in the same order of magnitude as the total deposit P in the lake sediment. This suggests that groundwater-transported P was the original source of the now internally cycled P. For many lakes, internal P cycling is the immediate controller of their trophic state. Yet, this does not take away the importance of the external and possibly geogenic origin of the P accumulating in lake sediments, and subsequently being released to the water column.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献