Cluster-Assisted Mesoplasma Chemical Vapor Deposition for Fast Epitaxial Growth of SiGe/Si Heterostructures: A Molecular Dynamics Simulation Study

Author:

Wang Wen-bo12ORCID,Li Wenfang1,Ohta Ryoshi3,Kambara Makoto34

Affiliation:

1. School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China

2. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

3. Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan

4. Department of Materials and Manufacturing Science, Osaka University, 2-1, Yamadaoka, Suita 565-0871, Japan

Abstract

Co-condensation of mixed SiGe nanoclusters and impingement of SiGe nanoclusters on a Si substrate were applied using molecular dynamics (MD) simulation in this study to mimic the fast epitaxial growth of SiGe/Si heterostructures under mesoplasma chemical vapor deposition (CVD) conditions. The condensation dynamics and properties of the SiGe nanoclusters during the simulations were investigated first, and then the impingement of transient SiGe nanoclusters on both Si smooth and trench substrate surfaces under varying conditions was studied theoretically. The results show that the mixed nanoclusters as precursors demonstrate potential for enhancing epitaxial SiGe film growth at a high growth rate, owing to their loosely bound atomic structures and high mobility on the substrate surface. By varying cluster sizes and substrate temperatures, this study also reveals that smaller clusters and higher substrate temperatures contribute to faster structural ordering and smoother surface morphologies. Furthermore, the formed layers display a consistent SiGe composition, closely aligning with nominal values, and the cluster-assisted deposition method achieves the epitaxial bridging of heterostructures during cluster impingement, highlighting its additional distinctive characteristics. The implications of this work make it clear that the mechanism of fast alloyed epitaxial film growth by cluster-assisted mesoplasma CVD is critical for extending it as a versatile platform for synthesizing various epitaxial films.

Funder

National Key R&D Program of China

Novel Light Alloy and its Process Technology Key Laboratory of Dongguan City

SOLiD-EV project

Supporting Industry Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3