Unveiling the Potential of Drone-Borne Optical Imagery in Forest Ecology: A Study on the Recognition and Mapping of Two Evergreen Coniferous Species

Author:

Korznikov Kirill12ORCID,Kislov Dmitriy1,Petrenko Tatyana1ORCID,Dzizyurova Violetta13ORCID,Doležal Jiří24,Krestov Pavel1ORCID,Altman Jan25ORCID

Affiliation:

1. Botanical Garden-Institute FEB RAS, 690024 Vladivostok, Russia

2. Institute of Botany of the CAS, 379 01 Třeboň, Czech Republic

3. Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia

4. Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic

5. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic

Abstract

The use of drone-borne imagery for tree recognition holds high potential in forestry and ecological studies. Accurate species identification and crown delineation are essential for tasks such as species mapping and ecological assessments. In this study, we compared the results of tree crown recognition across three neural networks using high-resolution optical imagery captured by an affordable drone with an RGB camera. The tasks included the detection of two evergreen coniferous tree species using the YOLOv8 neural network, the semantic segmentation of tree crowns using the U-Net neural network, and the instance segmentation of individual tree crowns using the Mask R-CNN neural network. The evaluation highlighted the strengths and limitations of each method. YOLOv8 demonstrated effective multiple-object detection (F1-score—0.990, overall accuracy (OA)—0.981), enabling detailed analysis of species distribution. U-Net achieved less accurate pixel-level segmentation for both species (F1-score—0.981, OA—0.963). Mask R-CNN provided precise instance-level segmentation, but with lower accuracy (F1-score—0.902, OA—0.822). The choice of a tree crown recognition method should align with the specific research goals. Although YOLOv8 and U-Net are suitable for mapping and species distribution assessments, Mask R-CNN offers more detailed information regarding individual tree crowns. Researchers should carefully consider their objectives and the required level of accuracy when selecting a recognition method. Solving practical problems related to tree recognition requires a multi-step process involving collaboration among experts with diverse skills and experiences, adopting a biology- and landscape-oriented approach when applying remote sensing methods to enhance recognition results. We recommend capturing images in cloudy weather to increase species recognition accuracy. Additionally, it is advisable to consider phenological features when selecting optimal seasons, such as early spring or late autumn, for distinguishing evergreen conifers in boreal or temperate zones.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3