Single-Source Thermal Evaporation Growth and the Tuning Surface Passivation Layer Thickness Effect in Enhanced Amplified Spontaneous Emission Properties of CsPb(Br0.5Cl0.5)3 Perovskite Films

Author:

Qaid Saif M. H.ORCID,Ghaithan Hamid M.,Al-Asbahi Bandar AliORCID,Aldwayyan Abdullah S.ORCID

Abstract

High-quality inorganic cesium lead halide perovskite CsPb(Br0.5Cl0.5)3 thin films were successfully achieved through evaporation of the precursors and deposition sequentially by a single-source thermal evaporation system. The different melting points of the precursors were enabled us to evaporate precursors one by one in one trip. The resulting films through its fabrication were smooth and pinhole-free. Furthermore, this technique enabled complete surface coverage by high-quality perovskite crystallization and more moisture stability oppositely of that produce by solution-processed. Then the perovskite films were encapsulated by evaporated a polymethyl methacrylate (PMMA) polymer as a specialized surface passivation approach with various thicknesses. The blue emission, high photoluminescence quantum yield (PLQY), stable, and low threshold of amplified spontaneous emission (ASE) properties of CsPb(Br0.5Cl0.5)3 films in the bulk structure at room temperature were achieved. The effects of the surface-passivation layer and its thickness on the optical response were examined. Detailed analysis of the dependence of ASE properties on the surface passivation layer thickness was performed, and it was determined this achieves performance optimization. The ASE characteristics of bare perovskite thin film were influenced by the incorporation of the PMMA with various thicknesses. The improvement to the surface layer of perovskite thin films compared to that of the bare perovskite thin film was attributed to the combination of thermal evaporation deposition and surface encapsulation. The best results were achieved when using a low PMMA thickness up to 100 nm and reducing the ASE threshold by ~11 μJ/cm2 when compared with free-encapsulation and by ~13 μJ/cm2 when encapsulation occurs at 200 nm or thicker. Compared to the bare CsPb(Br0.5Cl0.5)3, ASE reduced 1.1 times when the PMMA thickness was 100 nm.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3