Fiber Orientation and Concentration in an Injection-Molded Ethylene-Propylene Copolymer Reinforced by Hemp

Author:

Dupuis Antoine,Pesce Jean-Jacques,Ferreira Paulo,Régnier GillesORCID

Abstract

This paper characterizes and analyzes the microstructures of injection-molded polypropylene parts reinforced with 20 wt% of hemp fibers in order to understand the process induced variations in thermomechanical properties. In-thickness fiber orientation and fiber content were determined by X-ray tomography along the flow. The fiber content along the flow path was also determined by direct fiber content measurements after matrix dissolution, showing an increase of 2%/100 mm for a 2.2 mm-thick plate due to fiber migration during the filling stage. A typical shell/core structure for fiber orientation in injection molding was observed, but with a very clear transition between the layer solidified under high shear rates and the core in which the fiber content was reduced by more than 50%. The orientation of hemp fibers is lower than the one of glass fibers, especially in thickness direction. However, the overall fiber orientation in the injection direction induces significant anisotropic thermomechanical properties, which cannot be explained by simple micromechanical models that consider isotropic mechanical properties for hemp fibers. These phenomena must be taken into account in process simulation codes for injection molding to better predict thermomechanical properties as well as part shrinkage and warpage to design molds.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3