Preparation and Characterization of Nonwoven Fibrous Biocomposites for Footwear Components

Author:

Asabuwa Ngwabebhoh Fahanwi,Saha NabanitaORCID,Nguyen Hau Trung,Brodnjak Urška VrabičORCID,Saha Tomas,Lengalova Anežka,Saha Petr

Abstract

Chromium-tanned leathers used in the manufacture of footwear and leather goods pose an environmental problem because they contain harmful chemicals and are very difficult to recycle. A solution to this problem can be composite materials from tree leaves, fruit residues and other fibrous agricultural products, which can replace chromium-tanned leather. The present study describes the preparation of biocomposite leather-like materials from microbial cellulose and maple leave fibers as bio-fillers. The formulation was optimized by design of experiment and the prepared biocomposites characterized by tensile test, FTIR, DMA, SEM, adhesion test, volume porosity, water absorptivity, surface wettability and shape stability. From the viewpoint of future use in the footwear industry, results obtained showed that the optimized material was considerably flexible with tensile strength of 2.13 ± 0.29 MPa, elastic modulus of 76.93 ± 1.63 MPa and porosity of 1570 ± 146 mL/min. In addition, the material depicted good shape stability and surface adhesive properties. The results indicate that a suitable treatment of biomass offers a way to prepare exploitable nonwoven fibrous composites for the footwear industry without further burdening the environment.

Funder

European Cooperation in Science and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3