UCST Type Phase Boundary and Accelerated Crystallization in PTT/PET Blends

Author:

Sugeno Kousuke,Kokubun Satoshi,Saito HiromuORCID

Abstract

We investigated the structure development and crystallization kinetics in the blends of poly(trimethylene terephthalate) (PTT) and poly(ethylene terephthalate) (PET) by polarized optical microscopy and light scattering. The crystallization of the blend was found to be faster and the size of the spherulites was much smaller than those of the neat component polymers by melt crystallization at low temperature of 180 °C. The discontinuous gap of the crystallization time with temperature was seen in the blends, suggesting phase transition at the temperature Ttr; e.g., the Ttr of the 60/40 PTT/PET was 215 °C. The crystallization was accelerated due to enhancement of the nucleation rate, and interconnected tiny spherulites were obtained at the temperature below the Ttr. The accelerated crystallization and the development of the interconnected structure might be attributed to the liquid-liquid phase separation via spinodal decomposition, due to existence of the upper critical solution temperature (UCST) type phase boundary.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference42 articles.

1. Polymer-Polymer Miscibility;Olabis,1979

2. Polymer Blends;Paul,1978

3. Polymer Blends Handbook;Utracki,2014

4. Characterization of Polymer Blends: Miscibility, Morphology and Interfaces;Thomas,2015

5. UCST and LCST behavior in polymer blends

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3