Affiliation:
1. Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120 Halle (Saale), Germany
2. Fraunhofer Center for International Management and Knowledge Economy IMW, Field Office Halle, Leipziger Str. 70/71, 06108 Halle (Saale), Germany
Abstract
Among the economic sectors, mobility is showing significant environmental impacts, especially in the use phase of vehicles. By substituting fossil-fuelled propelling systems, environmental impacts such as the Global Warming Potential (GWP) can be reduced. The use of properly designed light electric vehicles (LEVs) significantly reduces further environmental impacts, as well as maintenance costs, which are relevant for a circular economy. For example, the use of low-voltage (42 V) propelling systems enables the maintenance of LEVs in a broader range of existing bicycle workshops. Regarding the environmental impacts, the described LCA results indicate the advantage of LEVs compared with EVs and ICVs, e.g., vehicle weight is found to be a main factor related to environmental impact for each type of vehicle. This implies a reduced need for battery capacity and lower emissions of particulate matter from tire and break abrasion. This study aims to present the application potential of LEVs and the related reduction in environmental impacts. Anonymised inventory lists of municipal vehicle fleets are analysed for quantifying the substitution potential of LEVs in specific use cases. For this purpose, the use phase of vehicles is analysed with a focus on product design for repair and recycling and supplemented by the results of a comparative environmental impact assessment of internal combustion engine vehicles (ICEVs), electric vehicles (EVs), and LEVs. The comparison is made on the premise of similar application requirements. These specifications are the ability of each of the vehicles to transport a maximum of three persons (driver included) or one driver and 250 kg of cargo in 3 m3 over a daily distance of 100 km in urban areas. On this basis, the municipal environmental benefits derived from substituting small vehicles in the form of ICEVs and EVs with LEVs are assessed. The results show that in the field of municipal mobility, a relevant number of conventional small vehicles can be substituted with LEVs. The environmental impacts in categories of the highest robustness level, RL I, that is, Global Warming Potential, fine dust emissions, and Ozone Depletion Potential, can be reduced by LEVs by 50% compared with EVs and by over 50% compared with ICEVs. The strong influence of vehicle weight on the abrasive conditions of tires and brakes is considerable, as shown by reduced fine dust emissions.
Funder
German Federal Ministry of Education and Research
Reference28 articles.
1. Anenberg, S., Miller, J., Henze, D., and Minjares, R. (2024, March 03). A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015. Int. Counc. Clean Transp., Available online: https://theicct.org/wp-content/uploads/2021/06/Global_health_impacts_transport_emissions_2010-2015_20190226.pdf.
2. Evaluation of policy options supporting electric vehicles in city logistics: A case study;Juvvala;Sustain. Cities Soc.,2021
3. (2023, April 25). Allianzdirect. Available online: https://www.allianzdirect.de/zahlen-daten-fakten/elektroauto-statistiken/.
4. (2023, April 25). Kraftfahrt Bundesamt. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Vierteljaehrlicher_Bestand/vierteljährlicher_bestand_node.html.
5. Organization of Technological Processes for maintenance and repair of electric vehicles;Fayziyev;Int. J. Adv. Sci. Res.,2022