Carbon Footprint for Jeans’ Circular Economy Model Using Bagasse

Author:

Semba Toshiro12ORCID,Furukawa Ryuzo13,Itsubo Norihiro4

Affiliation:

1. Graduate School of Environmental and Information Studies, Tokyo City University, Yokohama 224-0015, Japan

2. Department of General Education, National Institute of Technology, Tokyo College, Tokyo 193-0997, Japan

3. Faculty of Environmental Studies, Graduate School of Environmental and Information Studies, Tokyo City University, Yokohama 224-0015, Japan

4. Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan

Abstract

To date, clothing has been produced and disposed of in large quantities. It is also known that each process, from the procurement of raw materials to production, transportation, sales, laundry, and disposal, has a significant environmental impact. According to the Global Fashion Agenda, greenhouse gas (GHG) emissions from the fashion industry account for 4% of the global total. Therefore, apparel makers are shifting from a linear economy to a circular economy. For example, the Japanese start-up Curelabo Co., Ltd. (Okinawa, Japan) developed jeans (bagasse washi jeans) made from bagasse, which is a residual material derived from sugarcane after the extraction of cane juice. Furthermore, the use of improved dyeing reduces boiler fuel consumption and eliminates the need for detergents and acid. For disposal, the used jeans and their production waste are processed into biochar for carbon sequestration. In this study, we attempted to calculate GHG emissions using life cycle assessment (LCA) for the circular economy model developed by Curelabo Co., Ltd. GHG emissions from the production of bagasse washi jeans were 1.09 × 101 kg-CO2e. Dyeing, bleaching, and fabric finishing, known as the wet processes, were found to contribute a large proportion of GHG emissions due to their high energy consumption. Furthermore, the entire lifecycle of GHG emissions from bagasse washi jeans, including transport, sales, laundry, and disposal, were 1.53 × 101 kg-CO2e. First, the use of bagasse washi yarn for the weft reduced by 2.99 × 10−1 kg-CO2e compared with the use of conventional 100% bleached cotton yarn. Second, compared with conventional dyeing, GHG emissions from the improved dyeing process were reduced by 2.78 kg-CO2e. Third, the disposal of the used jeans and their production waste into biochar reduced GHG emissions by 9.01 × 10−1 kg-CO2e. Additionally, GHG emissions can be reduced by re-inputting waste in the paper-making process and by using liquefied natural gas as boiler fuel in the dyeing process.

Funder

Nippon Life Insurance Foundation

Publisher

MDPI AG

Reference69 articles.

1. Ellen MacArthur Foundation (2017). A New Textiles Economy: Redesigning Fashion’s Future, Ellen MacArthur Foundation.

2. The Japan Textiles Importers Association (2021). Japan’s Apparel Market and Imports, The Japan Textiles Importers Association.

3. Textile Waste Fiber Regeneration via a Green Chemistry Approach: A Molecular Strategy for Sustainable Fashion;Sun;Adv. Mater.,2021

4. Ministry of the Environment (2020). FY 2020 Survey on Fashion and the Environment—Results of the “Fashion and the Environment” Survey.

5. Global Fashion Agenda (2020). Fashion on Climate, Global Fashion Agenda.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3