Automation and Optimization of Rat Heart Decellularization Using a Vibrating Fluid Column

Author:

Bonciog Dumitru-Daniel1,Lascu Mihaela-Ruxandra1,Mâțiu-Iovan Liliana1,Ordodi Valentin Laurențiu2

Affiliation:

1. Measurements and Optical Electronics Department, Politehnica University Timisoara, 300006 Timisoara, Romania

2. Chemistry and Engineering of Organic and Natural Compounds Department, University Politehnica Timisoara, 300006 Timisoara, Romania

Abstract

This paper presents the validation of a software application to optimize the discoloration process in simulated hearts and to automate and determine the final moment of decellularization in rat hearts using a vibrating fluid column. The implemented algorithm specifically for the automated verification of a simulated heart’s discoloration process was optimized in this study. Initially, we used a latex balloon containing enough dye to reach the opacity of a heart. The complete discoloration process corresponds to complete decellularization. The developed software automatically detects the complete discoloration of a simulated heart. Finally, the process stops automatically. Another goal was to optimize the Langendorff-type experimental apparatus, which is pressure-controlled and equipped with a vibrating fluid column that shortens the decellularization time by mechanically acting directly on cell membranes. Control experiments were performed with the designed experimental device and the vibrating liquid column using different decellularization protocols for hearts taken from rats. In this work, we used a commonly utilized solution based on sodium dodecyl sulfate. Ultraviolet spectrophotometry was used to measure the evolution of the dye concentration in the simulated hearts and, similarly, to determine the concentrations of deoxyribonucleic acid (DNA) and proteins in the rat hearts.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automation of Decellularization Process Using Artificial Neural Networks;2023 17th International Conference on Engineering of Modern Electric Systems (EMES);2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3