Application of a Bayesian-Based Integrated Approach for Groundwater Contamination Sources Parameter Identification Considering Observation Error

Author:

Yan Xueman12,An Yongkai34

Affiliation:

1. College of Urban and Environmental Sciences, Northwest University, Xi’an 710027, China

2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

3. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, China

4. School of Water and Environment, Chang’an University, No. 126 Yanta Road, Xi’an 710054, China

Abstract

Groundwater contamination source (GCS) parameter identification can help with controlling groundwater contamination. It is proverbial that groundwater contamination concentration observation errors have a significant impact on identification results, but few studies have adequately quantified the specific impact of the errors in contamination concentration observations on identification results. For this reason, this study developed a Bayesian-based integrated approach, which integrated Markov chain Monte Carlo (MCMC), relative entropy (RE), Multi-Layer Perceptron (MLP), and the surrogate model, to identify the unknown GCS parameters while quantifying the specific impact of the observation errors on identification results. Firstly, different contamination concentration observation error situations were set for subsequent research. Then, the Bayesian inversion approach based on MCMC was used for GCS parameter identification for different error situations. Finally, RE was applied to quantify the differences in the identification results of each GCS parameter under different error situations. Meanwhile, MLP was utilized to build a surrogate model to replace the original groundwater numerical simulation model in the GCS parameter identification processes of these error situations, which was to reduce the computational time and load. The developed approach was applied to two hypothetical numerical case studies involving homogeneous and heterogeneous cases. The results showed that RE could effectively quantify the differences caused by contamination concentration observation errors, and the changing trends of the RE values for GCS parameters were directly related to their sensitivity. The established MLP surrogate model could significantly reduce the computational load and time for GCS parameter identification. Overall, this study highlights that the developed approach represents a promising solution for GCS parameter identification considering observation errors.

Funder

Natural Science Basic Research Program of Shanxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3