Analysis of the Long-term Precipitation Trend in Illinois and Its Implications for Agricultural Production

Author:

Dahal Vaskar,Gautam SudipORCID,Bhattarai RabinORCID

Abstract

Climate change is expected to modify the hydrological cycle resulting in a change in the amount, frequency, and intensity of surface precipitation. How the future hydrological pattern will look is uncertain. Climate change is expected to bring about intense periods of dryness and wetness, and such behavior is expected to be difficult to predict. Such uncertainty does not bode well for the agricultural systems of the United States (US) Midwest that are reliant on natural precipitation systems. Therefore, it is necessary to analyze the behavior of precipitation during the cropping period. The manifestation of global-warming-related changes has already been reported for the last couple of decades and more so in the current decade. Thus, precipitation data from the recent past can provide vital information on what is about to come. In this study, the precipitation data of Illinois, a Midwestern state of the US with rain-fed agriculture, was analyzed with a focus on the climate dynamics during the cropping period. It was observed that even though there has been some increase in the annual precipitation amount (+1.84 mm/year) due to the increase in precipitation frequency and intensity, such change happened outside of the cropping period, thereby ensuring that climate change has not manifested itself during the cropping period.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference52 articles.

1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Pachauri,2014

2. Climate Change and Future Analysis: Is Stationarity Dying?

3. On critiques of “Stationarity is dead: Whither water management?”;Milly;Water Resour. Res.,2015

4. Testing Hydrologic Time Series for Stationarity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3