Impact of the Order of Movement on the Median Nerve Root Function: A Neurophysiological Study with Implications for Neurodynamic Exercise Sequencing

Author:

Ibrahim Dalia1,Ahbouch Amal12ORCID,Qadah Raneen Mohammed1,Kim Meeyoung1,Alrawaili Saud M.3,Moustafa Ibrahim M.12ORCID

Affiliation:

1. Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates

2. Neuromusculoskeletal Rehabilitation Research Group, RIMHS–Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates

3. Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

Background: Neurodynamic exercise is a common clinical practice used to restore neural dynamic balance. The order in which movements are performed during these exercises is believed to play a crucial role in their effectiveness. This study aimed to investigate the impact of different sequences of neurodynamic exercise on nerve root function, with a specific focus on the median nerve. Methods: Participants were assigned randomly to three experimental groups, each undergoing a different test sequence: standard, proximal-to-distal, and distal-to-proximal. Dermatomal somatosensory evoked potentials (DSSEPs) were recorded at key levels (C6, C7, C8, and T1). Results: The findings revealed a significant influence of the movement sequence on DSSEP amplitudes. The execution of neurodynamic exercise in the proximal-to-distal sequence was associated with a notable reduction in amplitudes (p < 0.05). Conversely, the distal-to-proximal sequence resulted in increased amplitudes compared to the standard sequence (p < 0.05). Conclusions: This study underscores the importance of carefully considering the order of movements during neurodynamic exercising, particularly when evaluating nerve roots that lack the protective perineurium. The choice of sequence appears to have a substantial impact on nerve function, with implications for optimizing clinical neurodynamic exercise techniques.

Funder

This research received no external funding

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3