Affiliation:
1. Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
2. Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
3. Department of General Thoracic Surgery, Dokkyo Medical University, Mibu 321-0293, Japan
4. Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
Abstract
Lung cancer is the second most common cancer in the world, with an average five-year survival rate of 15 percent. Approximately 238,340 people were diagnosed in the US in 2023 based on the estimation of the American Cancer Society, and 127,070 people died from it. Cancer has always been a big problem for scientists. There has never been a good solution. So, the early detection of cancer is particularly important. In recent years, endobronchial ultrasonography (EBUS) images have been used more and more in the diagnosis of lung cancer because of their advantages of good real-time performance, no radiation, and superior performance. This research aims to develop a computer-aided diagnosis (CAD) system to differentiate benign and malignant peripheral pulmonary lesions (PPLs). The efficacy of this framework was evaluated on a dataset comprising 69 cases of lung carcinoma, encompassing 59 malignant instances and 10 benign cases. The final experimental results of accuracy, F1-Score, AUC, PPV, NPV, sensitivity, and specificity were 0.7, 0.63, 0.75, 0.84, 0.68, 0.56, and 0.85, respectively. From the experiment results, the developed CAD system has the potential ability to diagnose PPLs by using the EBUS images based on Deep Learning.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献