Design of Energy Recovery Control for General Virtual Synchronous Machines Based on Various Forms of Energy Storage

Author:

Liu Haigang12,Sun Chu3ORCID,Zhang Xiaolin45,Wang Na6,Wang Juncheng7

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

3. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

4. NARI Group Corporation (State Grid Electric Power Research Institute) Co., Ltd., Nanjing 211006, China

5. Beijing DC Transmission and Distribution Engineering Technology Research Center (China-EPRI Electrical Engineering Co., Ltd.), Beijing 102200, China

6. Beihang School, Beihang University, Beijing 100191, China

7. Department of Electrical and Computer Engineering, McGill University, Montreal QC H3A 0G4, Canada

Abstract

The reduced inertia in the power system due to renewable energy integration introduces operation challenges in frequency stability and control. The current options for virtual inertia and frequency support are limited by the energy resources and the power electronic interface. Considering the demand on response speed and energy capacity, a general virtual synchronous machine (VSM) control based on various forms of energy storage systems (ESS) is proposed. The steady-state energy variation of energy storage is found to be proportional to the virtual damping or governor gain, while inversely proportional to the integral gain of system frequency control. It is found that the size of energy storage can be at the second time scale (for example, 6.8 p.u.·s) for VSM implementation, which is significantly smaller than the conventional hour-scale energy storage in the power system. Based on energy dynamic analysis, stability requirement, and bandwidth separation rules, an energy recovery control is designed to maintain constant state of charge (for example, 50%) while avoiding conflicts with frequency regulation. The time scale of the designed energy recovery control loop (for example, hundreds of seconds) is longer than the secondary frequency control. The effectiveness of the proposed control is verified through comprehensive case studies.

Funder

Beijing Institute of Precision Mechatronics and Controls

School of Automation Science and Electrical Engineering, Beihang University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3