Determination of the Equivalent Thickness of a Taiko Wafer Using ANSYS Finite Element Analysis

Author:

Vinciguerra Vincenzo1ORCID,Malgioglio Giuseppe Luigi1,Landi Antonio1,Renna Marco1

Affiliation:

1. Automotive and Discrete Group (ADG) R&D Department, STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy

Abstract

The successful handling of large semiconductor wafers is crucial for scaling up their production. Early-stage warpage control allows the prevention of undesirable asymmetric warpage, known as wafer bifurcation or buckling. Indeed, even in a gravity-free environment, thinning an 8″ or 12″ semiconductor wafer can result in warpage and bifurcation. To mitigate this issue, the taiko method, which involves creating a thicker ring region around the rim of the wafer, has been widely used. Previous research has focused on the theoretical factors affecting the warpage of a backside metalized taiko wafer. This work extends the case to a front-side metalized taiko wafer and introduces the concept of the equivalent thickness of a taiko wafer. The equivalent thickness of a taiko wafer, influenced by the ring region, lies in between the thickness of the central region and that of the annular region. Because of the limited number of taiko wafers that can be produced on a production line, modelling can be beneficial. In this work we compared the results of a developed analytical model with those obtained from a finite element analysis (FEA) approach with ANSYSY® Mechanical Enterprise 2022/R2 software to model the equivalent thickness of a taiko wafer. We investigated the curvature as a function of the stress of the metal layer, considering key design factors such as the substrate region thickness, the thickness of the thin metal film, the step height, and the width of the ring region. By systematically varying the thickness of the central region of the taiko wafer, we explored the curvature as a function of stress induced by thermal load in the linear regime and determined the slopes in the linear region of the curvature vs. stress curves. The aim of this study is to identify regularities and similarities with the Stoney equation and investigate the validity of the analytical approach for the case of a taiko substrate. The results show that there is a good agreement between the analytical model of a taiko wafer and the numerical analysis gained by the FEA methods.

Funder

H2020-ECSEL Joint Undertaking

REACTION (first and euRopEAn siC eigTh Inches pilOt liNe) Project

MUR-PNRR project SAMOTHRACE

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite Element Analysis of the Upsurge of Bifurcation during the Thinning Process of Large Semiconductor Wafers;2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2024-04-07

2. A Comparison of Analytical and Finite Element Analysis Methods for Determining the Equivalent Thickness of Large 4H-SiC Taiko Wafers;2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2024-04-07

3. Extension of the Equivalent Thickness Concept to the Bifurcation of Large Semiconductor Front Side Metal Taiko Wafer investigated by ANSYS Finite Element Analysis Methods;2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2024-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3