Experimental Evaluation of Extended Reality Technologies in the Development of Individualized Three-Dimensionally Printed Upper Limb Prostheses

Author:

Górski Filip1ORCID,Łabudzki Remigiusz1,Żukowska Magdalena1,Sanfilippo Filippo2,Ottestad Morten2,Zelenay Martin3,Băilă Diana-Irinel4ORCID,Pacurar Razvan5ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland

2. Department of Engineering Sciences, Faculty of Engineering and Science, University of Agder (UiA), Jon Lilletuns vei 9, NO-4879 Grimstad, Norway

3. Bizzcom s.r.o., Šľachtiteľská ulica 591/2, 919 28 Bučany, Slovakia

4. Department of Manufacturing Engineering, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, Blv. Splaiul Independenței, No. 313, Sector 6, 060042 Bucharest, Romania

5. Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania

Abstract

This paper presents results from experimental studies that assess the utilization of virtual, augmented, and mixed reality (VR, AR, MR) at different stages of developing personalized 3D printed upper limb prostheses for adult patients. The prostheses are designed automatically using the AutoMedPrint system, leveraging 3D scans as described in various prior publications. Various stages of development of the prosthesis are made as applications of different extended reality technologies. An assembly instruction is implemented as an immersive VR application, a configurator is designed as AR application and a configurator and try-on application is prepared and deployed in MR. The applications are tested by an international group of experts during a scheduled experiment. The experts then participate to surveys and comparatively evaluate the potential of all the XR technologies. The paper presents the development of these applications, provides a detailed account of the experimental process, including the rankings of XR technologies for different applications throughout the lifecycle of a prosthetic device.

Funder

EEA grants

Polish National Center for Research and Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3