Affiliation:
1. Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
Abstract
Studying the impact of typical vegetation types in forest conversion zones on soil organic carbon (SOC) structure and stability is crucial for developing terrestrial ecosystem carbon sequestration strategies. In this study, we selected three typical forest stands in the Nanling National Nature Reserve: a primary evergreen broad-leaved forest (BL), a secondary mixed coniferous and broad-leaved forest (ML), and a Chinese fir plantation (CL). Soil samples were collected to examine the SOC fractions and carbon pool management index (CPMI) in three forest stands. The influence of soil property factors on SOC fractions was also analyzed. The results showed that the transformation process from a BL to an ML or a CL changed the structure and stability of organic carbon by reducing the labile SOC fractions and increasing the recalcitrant carbon fraction in the soil. The higher lability index (LI) and CPMI of soils in the BL indicated better carbon accumulation and activity, making this treatment more advantageous for management strategies aimed at promoting natural forest renewal and ecological restoration. Correlation and RDA analysis revealed that the availability of soil P was a key factor limiting the variation in organic C fractions in the acidic soils of tropical forests in South China.
Funder
Guangzhou Science and Technology Project
Guangdong Basic and Applied Basic Research Foundation
Science and Technology Program from Forestry Administration of Guangdong Province
Forestry Science and Technology Innovation Platform Operation Subsidy Project of China