Option Pricing and Portfolio Optimization under a Multi-Asset Jump-Diffusion Model with Systemic Risk

Author:

Makarov Roman N.1ORCID

Affiliation:

1. Department of Mathematics, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada

Abstract

We explore a multi-asset jump-diffusion pricing model, combining a systemic risk asset with several conditionally independent ordinary assets. Our approach allows for analyzing and modeling a portfolio that integrates high-activity security, such as an exchange trading fund (ETF) tracking a major market index (e.g., S&P500), along with several low-activity securities infrequently traded on financial markets. The model retains tractability even as the number of securities increases. The proposed framework allows for constructing models with common and asset-specific jumps with normally or exponentially distributed sizes. One of the main features of the model is the possibility of estimating parameters for each asset price process individually. We present the conditional maximum likelihood estimation (MLE) method for fitting asset price processes to empirical data. For the case with common jumps only, we derive a closed-form solution to the conditional MLE method for ordinary assets that works even if the data are incomplete and asynchronous. Alternatively, to find risk-neutral parameters, the least-square method calibrates the model to option values. The number of parameters grows linearly in the number of assets compared to the quadratic growth through the correlation matrix, which is typical for many other multi-asset models. We delve into the properties of the proposed model, its parameter estimation using the MLE method and least-squares technique, the evaluation of VaR and CVaR metrics, the identification of optimal portfolios, and the pricing of European-style basket options. We propose a Laplace-transform-based approach to computing Value at Risk (VaR) and conditional VaR (also known as the expected shortfall) of portfolio returns. Additionally, European-style basket options written on the extreme and average stock prices or returns can be evaluated semi-analytically. For numerical demonstration, we examine a combination of the SPDR S&P 500 ETF (as a systemic risk asset) with eight ordinary assets representing diverse industries. Using historical assets and options prices, we estimate the real-world and risk-neutral parameters of the model with common jumps, construct several optimal portfolios, and evaluate various basket options with the eight assets. The results affirm the robustness and efficiency of the estimation and evaluation methodologies. Computational results are compared with Monte Carlo estimates.

Funder

NSERC Discovery

Publisher

MDPI AG

Subject

Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting

Reference31 articles.

1. Testing for jumps in a discretely observed process;Jacod;The Annals of Statistics,2009

2. Multiplicative correlations;Baba;Annals of the Institute of Statistical Mathematics,2006

3. Multivariate asset models using Lévy processes and applications;Ballotta;The European Journal of Finance,2016

4. Lévy simple structural models;Baxter;International Journal of Theoretical and Applied Finance,2007

5. Best, Michael J. (2010). Portfolio Optimization, Chapman & Hall/CRC.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3