Vector Generation of Quantum Contextual Sets in Even Dimensional Hilbert Spaces

Author:

Pavičić Mladen,Megill Norman

Abstract

Recently, quantum contextuality has been proved to be the source of quantum computation’s power. That, together with multiple recent contextual experiments, prompts improving the methods of generation of contextual sets and finding their features. The most elaborated contextual sets, which offer blueprints for contextual experiments and computational gates, are the Kochen–Specker (KS) sets. In this paper, we show a method of vector generation that supersedes previous methods. It is implemented by means of algorithms and programs that generate hypergraphs embodying the Kochen–Specker property and that are designed to be carried out on supercomputers. We show that vector component generation of KS hypergraphs exhausts all possible vectors that can be constructed from chosen vector components, in contrast to previous studies that used incomplete lists of vectors and therefore missed a majority of hypergraphs. Consequently, this unified method is far more efficient for generations of KS sets and their implementation in quantum computation and quantum communication. Several new KS classes and their features have been found and are elaborated on in the paper. Greechie diagrams are discussed.

Funder

Hrvatska Zaklada za Znanost

MSE

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3