Investigation of the Effect of End Mill-Geometry on Roughness and Surface Strain-Hardening of Aluminum Alloy AA6082

Author:

Filippov PavelORCID,Kaufeld Michael,Ebner Martin,Koch Ursula

Abstract

Micro-milling is a promising technology for micro-manufacturing of high-tech components. A deep understanding of the micro-milling process is necessary since a simple downscaling from conventional milling is impossible. In this study, the effect of the mill geometry and feed per tooth on roughness and indentation hardness of micro-machined AA6082 surfaces is analyzed. A solid carbide (SC) single-tooth end-mill (cutting edge radius 670 nm) is compared to a monocrystalline diamond (MD) end-mill (cutting edge radius 17 nm). Feed per tooth was varied by 3 μm, 8 μm and 14 μm. The machined surface roughness was analyzed microscopically, while surface strain-hardening was determined using an indentation procedure with multiple partial unload cycles. No significant feed per tooth influence on surface roughness or mechanical properties was observed within the chosen range. Tools’ cutting edge roughness is demonstrated to be the main factor influencing the surface roughness. The SC-tool machined surfaces had an average Rq = 119 nm, while the MD-tool machined surfaces reached Rq = 26 nm. Surface strain-hardening is influenced mainly by the cutting edge radius (size-effect). For surfaces produced with the SC-tool, depth of the strain-hardened zone is higher than 200 nm and the hardness increases up to 160% compared to bulk. MD-tool produced a thinner strain-hardened zone of max. 60 nm while the hardness increased up to 125% at the surface. These findings are especially important for the high-precision manufacturing of measurement technology modules for the terahertz range.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3