Abstract
Grasslands play an irreplaceable role in maintaining carbon balance and stabilizing the entire Earth’s ecosystem. Although the grasslands in Inner Mongolia are sensitive and vulnerable to climate change, a generalized effect of climate change on the grasslands is still unavailable. In this study, we analyzed the effects of annual mean precipitation and annual mean temperature on the normalized difference vegetation index from 1982 to 2010 on the Inner Mongolia Plateau. Our results indicated that the normalized difference vegetation index was mostly affected by precipitation, followed by temperature. Spatially, temperature and precipitation had greater effects on normalized difference vegetation index in dry regions than in wet ones. In time series, the effect of precipitation on normalized difference vegetation index had significantly decreased from 1982 to 2010 (R2 = 0.11, p > 0.05). However, the effect of temperature on normalized difference vegetation index remained stable. The high variation effect of precipitation on normalized difference vegetation index was due to the significant decrease in precipitation from 1980 to 2010. Thus, 35.47% and 0.56% of the dynamic of normalized difference vegetation index from 1982 to 2010 was accounted for by the precipitation and temperature, respectively. Our findings highlighted that grasslands are adaptable to the significant increase in temperature, but are sensitive to the decrease in precipitation on the Inner Mongolia Plateau.
Funder
the Second Tibetan Plateau Scientific Expedition and Research
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献