Development of a Power and Communication Bus Using HIL and Computational Intelligence

Author:

Sznura MarekORCID,Przystałka PiotrORCID

Abstract

This paper deals with the development of a power and communication bus named DLN (Device Lightweight Network) that can be seen as a new interface with auto-addressing functionality to transfer power and data by means of two wires in modern cars. The main research goal of this paper is to elaborate a new method based on a hardware in the loop technique aided by computational intelligence algorithms in order to search for the optimal structure of the communication modules, as well as optimal features of hardware parts and the values of software parameters. The desired properties of communication modules, which have a strong influence on the performance of the bus, cannot be found using a classical engineering approach due to the large number of possible combinations of configuration of the hardware and software parts of the whole system. Therefore, an HIL-based optimization method for bus prototyping is proposed, in which the optimization task is formulated as a multi-criteria optimization problem. Several criterion functions are proposed, corresponding to the automotive objectives and requirements. Different soft computing optimization algorithms, such as a single-objective/multi-objectives evolutionary algorithm and a particle swarm optimization algorithm, are applied to searching for the optimal solution. The verification study was carried out in order to show the merits and limitations of the proposed approach. Attention was also paid to the problem of the selection of the behavioural parameters of the heuristic algorithms. The overall results proved the high practical potential of the DLN, which was developed using the proposed optimization method.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3