Kinetics of Intermetallic Phase Precipitation in Manual Metal Arc Welded Duplex Stainless Steels

Author:

Orłowska Monika1,Pańcikiewicz Krzysztof1ORCID,Świerczyńska Aleksandra2ORCID,Landowski Michał2ORCID

Affiliation:

1. Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30-059 Kraków, Poland

2. Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland

Abstract

The article presents the influence of heat treatment on the kinetics of transformations in lean duplex LDX2101 steel and a weld made of standard duplex 2209 material, which was welded by manual metal arc welding. Changes in the microstructure, hardness, and magnetic phase content were analyzed after heat treatment was conducted at a temperature of 800 °C for a period ranging from 15 to 1440 min. Light and scanning microscopy, Vickers hardness measurements, and magnetic phase content measurements using a ferritoscope were used for the research. In the LDX2101 steel, the presence of δ-ferrite and γ austenite was identified and additional Cr2N nitrides were observed in the heat-affected zone. After heat treatment, the decomposition of δ ferrite into γ2 austenite and Cr2N nitrides was observed in both areas. In the case of weld made by the coated electrode in 2209 grade, a ferritic–austenitic microstructure with allotriomorphic austenite (γA), Widmanstätten austenite (γW), and idiomorphic austenite (γI) and δ-ferrite area with “bee swarms” of fine precipitations of chromium nitrides Cr2N and non-metallic inclusions (NMIs) of slag, formed during the welding process, are observed in the as-welded state. After heat treatment, the presence of the χ phase (after 15 min of annealing) and the σ phase (after 120 min of annealing) was additionally identified. The kinetics of intermetallic phase evolution in welds made from 2209 material were presented. The obtained results of hardness measurements and metallographic tests were correlated, which allowed for a quick check of the precipitation processes on the used element.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3