Predicting Wrist Posture during Occupational Tasks Using Inertial Sensors and Convolutional Neural Networks

Author:

Young CalvinORCID,Hamilton-Wright AndrewORCID,Oliver Michele L.ORCID,Gordon Karen D.ORCID

Abstract

Current methods for ergonomic assessment often use video-analysis to estimate wrist postures during occupational tasks. Wearable sensing and machine learning have the potential to automate this tedious task, and in doing so greatly extend the amount of data available to clinicians and researchers. A method of predicting wrist posture from inertial measurement units placed on the wrist and hand via a deep convolutional neural network has been developed. This study has quantified the accuracy and reliability of the postures predicted by this system relative to the gold standard of optoelectronic motion capture. Ten participants performed 3 different simulated occupational tasks on 2 occasions while wearing inertial measurement units on the hand and wrist. Data from the occupational task recordings were used to train a convolutional neural network classifier to estimate wrist posture in flexion/extension, and radial/ulnar deviation. The model was trained and tested in a leave-one-out cross validation format. Agreement between the proposed system and optoelectronic motion capture was 65% with κ = 0.41 in flexion/extension and 60% with κ = 0.48 in radial/ulnar deviation. The proposed system can predict wrist posture in flexion/extension and radial/ulnar deviation with accuracy and reliability congruent with published values for human estimators. This system can estimate wrist posture during occupational tasks in a small fraction of the time it takes a human to perform the same task. This offers opportunity to expand the capabilities of practitioners by eliminating the tedium of manual postural assessment.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3