Abstract
In this work, we introduce Pontryagin Neural Networks (PoNNs) and employ them to learn the optimal control actions for unconstrained and constrained optimal intercept problems. PoNNs represent a particular family of Physics-Informed Neural Networks (PINNs) specifically designed for tackling optimal control problems via the Pontryagin Minimum Principle (PMP) application (e.g., indirect method). The PMP provides first-order necessary optimality conditions, which result in a Two-Point Boundary Value Problem (TPBVP). More precisely, PoNNs learn the optimal control actions from the unknown solutions of the arising TPBVP, modeling them with Neural Networks (NNs). The characteristic feature of PoNNs is the use of PINNs combined with a functional interpolation technique, named the Theory of Functional Connections (TFC), which forms the so-called PINN-TFC based frameworks. According to these frameworks, the unknown solutions are modeled via the TFC’s constrained expressions using NNs as free functions. The results show that PoNNs can be successfully applied to learn optimal controls for the class of optimal intercept problems considered in this paper.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference29 articles.
1. A survey of numerical methods for optimal control;Rao;Adv. Astronaut. Sci.,2009
2. Modeling, Control, and Optimization of Natural Gas Processing Plants;Poe,2016
3. Numerical Solution of Two Point Boundary Value Problems;Keller,1976
4. Introduction to Numerical Analysis;Stoer,2013
5. Use of orthogonal collocation method in optimal control problems
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献