An Assessment of the Environmental Impacts of Transgenic Triploid Populus tomentosa in Field Condition

Author:

Guo Qi,Lu Nan,Luo ZijingORCID,Sun Yuhan,Jin Shaowu,Wang Shaoming,Guo Zhimin,Li Feifei,Chen Shouyi,Zhang Wanke,Ji Qingju,Li Yun

Abstract

Populus tomentosa grow rapidly, but are salt susceptible. To quickly and efficiently gain new poplar breeds with better salt resistance, a DREB transcription factor derived from Atriplex hortensis was transformed into triploid Populus tomentosa by our lab, which significantly improved the salt tolerance of host plants. However, environmental impacts of transgenic plants must be assessed before large-scale cultivation in China. Here, we conducted a field trial of AhDREB1 transgenic and non-transgenic triploid Populus tomentosa to assess the impact of transgenic trees on rhizospheric soil microbial communities and allelopathic activity of leaves. No significant differences in the number of soil microbes present were detected between the transgenic lines and the non-transgenic controls. The allelopathic activity of leaves from both the transgenic and non-transgenic lines varied with sampling time, but did not differ significantly between the transgenic and non-transgenic lines. These results indicate that the impact on the environment of AhDREB1 transgenic P. tomentosa did not differ significantly from that of the non-transformed controls for the variables observed in this field trial. We also investigated the persistence of AhDREB1 genes in decomposing transgenic poplar leaf on the soil under natural conditions for five months, and our data indicated that fragments of the genetically modified DNA were not detectable in the field after more than two months. We used a triphenyl tetrazolium chloride test (TTC) (or pollen germination method) and hybridization to test the pollen viability and fertility, respectively, of the transgenic and non-transgenic trees and the results showed that the pollen viability of both the transgenic and non-transgenic trees was extremely low in 2016; the receptor plant may have been sterile.

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Poplar Microbiome;Compendium of Plant Genomes;2024

2. Transgenic poplar gene flow monitoring in China.;Gene flow: monitoring, modeling and mitigation;2021

3. …Fell Upas Sits, the Hydra-Tree of Death †, or the Phytotoxicity of Trees;Molecules;2019-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3