Multi-Parameter Estimation Method and Closed-Form Solution Study for k-µ Channel Model

Author:

Tian Jie1ORCID,Fan Zhongqing1,Ji Zhengyu1,Li Xianglu1,Fei Peng2,Hou Dong3

Affiliation:

1. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China

2. High-Tech Institute, The First School, Rocket Force University of Engineering, Xi’an 710025, China

3. The School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

This paper proposes a novel multi-parameter estimation algorithm for the k-µ fading channel model to analyze wireless transmission performance in complex time-varying and non-line-of-sight communication scenarios involving moving targets. The proposed estimator offers a mathematically tractable theoretical framework for the application of the k-µ fading channel model in realistic scenarios. Specifically, the algorithm obtains expressions for the moment-generating function of the k-µ fading distribution and eliminates the gamma function using the even-order moment value comparison method. It then obtains two sets of solution models for the moment-generating function at different orders, which enable the estimation of the k and µ parameters using three sets of closed-form solutions. The k and µ parameters are estimated based on received channel data samples generated using the Monte Carlo method to restore the distribution envelope of the received signal. Simulation results show strong agreement between theoretical and estimated values for the closed-form estimated solutions. Additionally, the differences in complexity, accuracy exhibited under different parameter settings, and robustness under decreasing SNR may make the estimators suitable for different practical application scenarios.

Funder

CAEP Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. Simple Bounds for the Symmetric Capacity of the Rayleigh Fading Multiple Access Channel;Domanovitz;IEEE Trans. Wirel. Commun.,2020

2. Yin, H., Guo, X., Liu, P., Hei, X., and Gao, Y.J.A. (2020). Predicting Channel Quality Indicators for 5G Downlink Scheduling in a Deep Learning Approach. arXiv.

3. Hanzo, L. (2015). Quadrature Amplitude Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems, John Wiley & Sons. [2nd ed.].

4. The κ–µ Shadowed Fading Model: Unifying the κ-µ and η-µ Distributions;Paris;IEEE Trans. Veh. Technol.,2016

5. Entanglement-distribution maximization over one-sided Gaussian noisy channels;Wang;Phys. Rev. A,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3